User Manual of I-8438/8838 Matlab Embedded Controller

v1.1

Warranty

All products manufactured by ICP DAS are warranted against defective materials for a period of one year from the date of delivery to the original purchaser.

Warning

ICP DAS assume no liability for damages consequent to the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, nor for any infringements of patents or other rights of third parties resulting from its use.

Copyright

Copyright 2003 by ICP DAS. All rights are reserved.

Trademark

The names used for identification only maybe registered trademarks of their respective companies.

Table of Contents

1.	INTRODUCTION4
1.1	. HARDWARE SPECIFICATIONS FOR I-8438/88384
1.2	5. FEATURES
1.3	LIMITATIONS
1.4	MODULE LIST SUPPORTED FOR MATLAB DRIVER
2.	SOFTWARE INSTALLATION9
2.1	. DRIVER INSTALLATION9
3.	HOW TO WORK WITH MATLAB/SIMULINK13
3.1	. CREATE A CONTROL MODEL USING SIMULINK
3.2	SIMULINK MODEL WITH ICPDAS DRIVER19
3.3	BUILD THE PROGRAM BY RTW
3.4	PROGRAM DOWNLOADING & DATA UPLOADING
3.5	5. WORKING WITH STATEFLOW
3.6	5. WORKING WITH FIXED- POINT BLOCKSET
4.	DEMOS
4.1	. DI & DO MODULES
4.2	AI MODULES
4.3	AO MODULES
4.4	RELAY MODULES
4.5	50 ENCODER MODULE
5.	MATLAB DRIVER BLOCK REFERENCE55
SY	S_INIT
DA	TATOFILE
RE	ADFROMEEP
W	RITETOEEP
I-8	017H
I-8	02461
I-8	040
I-8	04164
I-8	042
I-8	051
I-8	052
I-8	053

I-8054	70
I-8055	72
I-8056	74
I-8057	75
I-8058	76
I-8060	77
I-8063	78
I-8064	
I-8090	81
APPENDIX A. UPDATING THE OS OF I-8438/8838	83
APPENDIX B. UPDATING THE FIRMWARE	85
APPENDIX C. CHANGE THE IP OF I-8438/8838	88
APPENDIX D. ADDITION FUNCTION FOR NEW DRIVER VERSION	92
APPENDIX E. HISTORY OF VERSIONS	96

1. Introduction

I-8438/8838 is the ICP DAS MATLAB Embedded Controller solution built in Ethernet and series interface with I/O expansion slot for Matlab development environment. For this application there are over 20 I/O bridges and system-level Simulink Blocksets have been developed. By using Simulink development environment and these Matlab Driver's blocksets, control algorithm can be easily constructed and verified without writing any code. Once the algorithm has been verified, by pressing a build button, users can convert a model to executable code, and download it to controller for test or practical application via RS232, Ethernet, RS485 (available soon) and even Modem (available soon). Furthermore, engineers can put more focus on advanced control algorithm design and development.

1.1. Hardware Specifications for I-8438/8838

General environment

Operating temperature: -25°C to +75°C Storage temperature: -30°C to +85°C Humidity: 5 ~ 95% Built-in power protection & network protection circuit

System

CPU: RDC, 80MHz, or compatible SRAM: 512K bytes FLASH ROM: 512K bytes COM ports for the I-8438 & 8838 COM1=RS-232, COM3=RS232/RS485, COM4=RS-232 Ethernet: 10 BaseT RTC, NVRAM & EEPROM Program download from COM1 & Ethernet Built-in 64-bit hardware unique serial number Built-in Watchdog Timer I/O Expansion Slot 4-slot for I-8438 8-slot for I-8838

1.2. Features

The I-8438/8838 series modules software driver for MATLAB development perfectly and easily combines with MATLAB/Simulink/Stateflow. With the support of library of many extended powerful blocks for the I-8000 series module I/O hardware driver, the sophisticated tasks of creating, analyzing, and simulating block diagram models can all be solved conveniently with MATLAB/Simulink/Stateflow. The I-8000 Series Modules Driver, in conjunction with MATLAB/Simulink/Stateflow, gives you the features you need for advanced controller development.

Have a look at some of the features of I-8000 Series Modules Driver:

- RS232 & Ethernet Communication Interfaces: The I-8000 Matlab solution gives you the function needed for your control program to download and upload experimental data through the media of RS232 & Ethernet communication interfaces.
- 2. Easy-to-use platform: The I-8000 Matlab solution provides GUI interface for easy application, which enables you to communicate conveniently with the I-8xx8 target hardware.
- 3. Reduce the design cycle of your product: This solution, in conjunction with MATLAB/Simulink/Stateflow, provides you the model-based control design approach. The model-based control design approach is a timesaving and cost-effective approach, allowing control engineers to work with a single model of a function or a complete system in an integrated software environment.
- 4. The extensibility of I/O driver blocks: This Matlab solution is tailored for the I-8438/8838 control system, which provides 4 or 8 expansion slots. Therefore, you can expand your I/O capability if necessary. Currently, this software driver provides over 20 I/O blocks to cooperate with Matlab development environment, which including DI, DO, DIO, AI, AO, Relay, and Encoder blocks. More I/O blocks will be developed in the future.

1.3. Limitations

The ICPDAS I-8000 series module software driver for MATLAB only supports *single tasking* and *Fixed-step* modes, due to the limitations of the RTW Embedded Coder.

 Single tasking: In Simulink, single tasking means that only one sample rate can be used in the whole control system. That is, every block must have the same sampling rate. It is suggested that users set the Sample time to be -1 when the option is available in the block.

Block Parameters: Step 💌
Step
Output a step.
- Parameters
Step time:
1
Initial value:
0
Final value:
1
Sample time:
Interpret vector parameters as 1-D
✓ Enable zero crossing detection
OK Cancel <u>H</u> elp <u>Apply</u>

2. Fixed-step: Because the RTW 4.x or 5.0 have not supported variable step time, the *Solver options* on the *Simulation Parameters* dialog box can only be set to *Fixed-step*.

୶ Simulation Parameters: untitled 📃 💽 🔊
Solver Workspace I/O Diagnostics Advanced Real-Time Workshop
Start time: 0.0 Stop time: 10.0
Solver options Type: Fixed-step discrete (no continuous states)
Fixed step size: 0.002 Mode: SingleTasking 💌
Output options Refine output Refine factor: 1
OK Cancel Help Apply

Furthermore, the RTW Embedded Coder does not support the following built-in Simulink blocks yet:

1. Simulink\Continuous

- No blocks in this library are supported

2. Simulink\Discrete

- First-Order Hold

3. Simulink\Function and Tables

- MATLAB Fcn

4. Simulink\Math

- Algebraic Constraint
- Matrix Gain

5. Simulink\Nonlinear

- Rate Limiter

6. Simulink\Signals & System

- Bus Selector
- IC

7. Simulink\Sinks

- XY Graph
- Display
- To File

8. Simulink\Sources

- Clock
- Chirp Signal
- Pulse Generator
- Ramp
- Repeating Sequence
- Signal Generator

1.4. Module list supported for Matlab Driver

The following table is a list of currently supported I-8000 I/O modules by Matlab Driver. They include DI, DO, DIO, AI, AO, relay, and encoder modules. If you want to get more information about the specification and function of these modules, please visit the website (<u>http://www.icpdas.com/</u>) to obtain the current driver situation and download the related documents and latest driver.

Туре	Description	Module Model
וח	Digital input module	I-8040, I-8051, I-8052,I-8053,
וט		I-8058
DO	Digital output module	I-8041, I-8056, I-8057
DIO	Digital input & output module	I-8042, I-8054, I-8055, I-8063
AI	Analog input module	I-8017H
AO	Analog output module	I-8024
Relay	Relay output module	I-8060, I-8064
Encoder	Encoder counter board	I-8090

2. Software Installation

Before installing the MATLAB solution software, users need to double check here is a Matlab software development system installed in the operation system. The requirement toolbox of the MATLAB software for ICPDAS I-8000 MATLAB solution is listed as follows:

- > MATLAB 6.1 or 6.5 below installed.
- Simulink 4.1 or 5.0 below installed.
- Real-Time Workshop 4.1 or 5.0 installed.
- Real-Time Workshop Embedded Coder 2.0 or 3.0 installed.
- Stateflow and Stateflow Coder 4.1 or 5.0 (not necessary).

Note that current solution is only tested in the Window system, which is Win98/2000/XP. In the following sections, we will demonstrate the installation procedure step by step to make everything registered correctly.

2.1. Driver installation

CD Step 1: Insert the product and enter the directory, Napdos\MATLAB\Driver\M1.0\MATLAB65 (for MATLAB 6.5) or Napdos\MATLAB\Driver\M1.0\MATLAB61 (for MATLAB 6.1). The files listed should look like the figure below. Double click Setup.exe to start the installation procedure.

Step 2: An ICP DAS MATLAB solution logo appears as shown in the figure below, and then the Welcome dialog box presents to prompt users to follow the installation steps. Press Next button to continue.

ICP DAS MATLAB solution logo

The "Welcome" dialog box

Step 3: The Installation directory for MATLAB dialog box shows the current directory information that MATLAB software has been installed, as

shown in the figure below. The default MATALB folder is "C:\Matlab6p5". If MATALB 6.1 or 6.5 was not installed on the default path, users must click the Browse button to choose the correct path. Otherwise, the MATLAB Solution Toolkit will not work properly. Press Next to the next step.

Specify the MATLAB root directory

Step 4: Then a dialog box is present to prompt you installing the software. Press Next to start copying files.

Step 5: After copying files has been completed successfully, the Setup Complete dialog box appears. Click Finish to exit the installation program.

Installation is completed successfully

Step 6: After the installation has been completed, re-boot your system to let the settings to take effect.

Reboot your system

3. How to work with MATLAB/Simulink

This chapter gives an example to demonstrate how to construct your control model with I-8xx8 driver blocks by using MATLAB/Simulink. Furthermore, you can also learn how to build the model into an executable file by employing RTW and RTW Embedded Coder. In the last two sections of this chapter, we will also show you how to cooperate the Stateflow Coder and Fixed-Point with the I-8xx8 driver blockset. After you completely follow this chapter instruction, it is expected that you can construct your own model, and build it into an executable file and download it to the I-8xx8 target system for application. And finally you can easily start your experiment and upload the data for further analysis.

3.1. Create a control model using Simulink

To start Simulink, you must first start MATLAB. And then you can start Simulink by clicking the Simulink icon 🗊 on the MATLAB toolbar.

On Microsoft Windows platform, starting Simulink displays the Simulink Library Browser window as shown below.

Then click D on the Library Browser's toolbar (Windows only). Simulink

opens a new model window, and then you can start to construct your own control model on the blank area of the model window.

💽 Simulink Library Browser	_
<u>File Edit View H</u> elp	
Find	
Create a new model	
E- Simulink	Continuous
→ Discrete → Functions & Tables → Math	Discrete
	Functions &
···· ☆ Sinks ···· ☆ Sources	Math

😺 ພ	ntitled												<u> </u>
File	<u>E</u> dit	⊻iew	Simula	tion Fo	rmat	<u>T</u> ools	<u>H</u> elp						
Ľ	🐸	8	3 %	Pa C	1 5		5	t	ا 🛞	▶		Normal	•
Ready	ļ			100%						od	e45		

Here, we offer a simple PID controller model to you, and show you how to create a model using many of the model-building commands and actions. The block diagram of the model looks like the figure below.

8438/8838 User Manual, Feb/2004, Ver.1.0, 8MS-004-01 ----- 14

To create this model, you need to copy blocks to the model from the Simulink block libraries. For example, to copy a *Step* block to the model window, follow these steps:

- 1. First expands the Library Browser tree to display the blocks in the *Sources* library. Do this by clicking the *Sources* node to display the *Sources* library blocks.
- 2. And then click the *Step* node to select the *Step* block.
- 3. Now drag the *Step* block from the browser and drop it in the model window. Simulink creates a copy of the *Step* block at the point where you dropped the node icon. Now the model window should look like the figure below.

Copy the rest of the blocks in a similar manner from other libraries to the model window. You can move a block from one place in the model window to another by dragging the block. You can also move a block a short distance by selecting the block, then pressing the arrow keys.

After all the blocks are copied to the model window, it's time to connect the blocks. To connect one block with another, just select one block, and position the mouse pointer over the output port on the block. Notice that the cursor shape changes to crosshairs. Hold down the mouse button and move the cursor to the input port of another block. Now release the mouse button when the cursor shape changes to double-lined crosshairs as shown in the figure below, and then the blocks are connected.

8438/8838 User Manual

However, we also need to connect one line to the input port of another block. This line is called *branch line*. Drawing a branch line is slightly different from drawing the line you just drew. To weld a connection to an existing line, follow these steps:

- 1. First, position the pointer on the existing line.
- 2. Press and hold down the Ctrl key (or click the right mouse button). Press the mouse button, and then drag the pointer to the input port of another block.
- 3. Release the mouse button when the cursor shape changes to double-lined crosshairs as shown in the figure below.

Finish making block connections. When these steps are done, your model should look like the model at the beginning of this section. Now open the Scope block to view the simulation output. Set the simulation parameters by choosing *Simulation parameters* from the *Simulation* menu. Set the options as follows:

- Stop time: 2.0
- Solver options: Fixed-step
- Fixed step size: 0.002
- Mode: Single Tasking

Here, we set Solver options to **Fixed-step** and Mode to **Single Tasking**. The reason is that the RTW Embedded Coder does not support variable step time yet. To compare the result of simulation with experiment fairly, the setting is suggested.

📣 Simulation Parameters: pid 📃 🗌 🗙
Solver Workspace I/O Diagnostics Advanced Real-Time Workshop
Start time: 0.0 Stop time: 2.0
Solver options Type: Fixed-step Image: Fixed-step
Fixed step size: 0.002 Mode: SingleTasking
Refine output Refine factor: 1
OK Cancel Help Apply

Close the *Simulation parameters* dialog box by clicking the OK button. Simulink applies the parameters and closes the dialog box. Choose *Start* from the simulation menu or click the *Start* button on the model window's toolbar and watch the traces of the Scope block's input.

The simulation stops when it reaches the stop time specified in the Simulation Parameters dialog box or you choose *Stop* from the *Simulation* menu or click the *Stop* button on the model window's toolbar.

3.2. Simulink model with ICPDAS driver

If the simulation output was satisfied, you can replace the built-in Simulink blocks with the I-8000 driver blocks. To add an I-8000 driver block to the model, follow these steps:

Step 1: Insert a SYS_INIT block from the System block library.

🙀 Simulink Library Browser		
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>H</u> elp		
🗋 🚅 –🛱 Find		
SYS_INIT: Initialize the I-8000 control system.		
Control System Toolbox	ICPD66 Dau ToFle Not	DataToFile
⊞ - 🛃 DSP Blockset	in the second]
Embedded Target for ICPDAS	EPD6 Maj	SYS_INIT
	Enterin Caroler	
- B DI		
- DIO		
🔄 DO		
- 🔄 Encoder		
DELAY		
System		
Embedded Target for Motorola		

Step 2: Double-click on the SYS_INIT block to open the SYS_INIT dialog box. Then select the correct type from the popup menu on the dialog box. Here, we select the type as I8838.

Step 3: Remove the Plant subsystem block and copy an I-8024 and an I-8017H block from the AI and AO library respectively.

Step 4: Replace the Scope block with a DataToFile driver block.

Step 5: Connect the blocks as shown in the following figure.

After the above steps are done, you can start to build your control model with the ICPDAS I-8000 driver blocks.

3.3. Build the program by RTW

In this section, we will show you how to convert the control model created in the previous section into an .exe file by RTW. To do this, just follow the following steps:

Step 1: Open the Simulation Parameters dialog box by choosing *Simulation parameters* from the *Simulation* menu.

Step 2: On the dialog box that displays, select Type as *Fixed-step*, Mode as *Single Tasking* in the "Solver options" field.

4	Simulation Parameters: pid	
	Solver Workspace I/O Diagnostic	Advanced Real-Time Workshop
	Simulation time Start time: 0.0 Stop	time: 5.0
<	Solver options Type: Fixed-step disc	rete (no continuous states)
	Fixed step size: 0.005	Mode: SingleTasking
	Output options	
	Refine output	Herine ractor:
	OK	Cancel Help Apply

Step 3: Then click the "Real-Time Workshop" tab and the pane changes. On the pane that shows up, select "Target configuration" from the "Category" field. Then click the Browse button to open the "System Target File Browser" window.

J.	Simulation Parameter	s: pid		_ 🗆 X
So	olver Workspace I/	0 Diagnostics Advanced	Real-Tim	ne Workshop
C	ategory: Target conf	iguration	.	Build
	Configuration			
:	System target file:	I_8xx8.tlc		Browse
·	Template makefile:	I_8xx8.tmf		
	Make command:	make_i8000		
I	🗌 Generate code o	nly	Stateflov	w options
		OK Cancel	Help	Apply

Step 4: On the System Target File Browser dialog, select the correct system target file from the list and then click the OK button to close the dialog box. Here, we choose I_8xx8.tlc.

System target file	Description	
een2 tlc	ASAM_ASAD2 Dete Definition Terret	
ht tle	DOS(4GW) Real-Time Target	
rt.tlc	RTW Embedded Coder	
rt.tlc	Visual C/C++ Project Makefile only for the RTM Embedded Coder	
rt.tlc	Generic Real-Time Target	
rt.tlc	Visual C/C++ Project Makefile only for the "grt" target	
rt malloc.tlc	Generic Real-Time Target with dynamic memory allocation	
rt malles the	Visual C/C+: Preject Makefile only for the "grt malloc" target	
8xx8.tlc	18xx8 Embedded Target	
pesssexp.tl:	Embedded Torget for Motorola MPC555 (algorithm export)	
pc555pil.tlc	Embedded Target for Motorola MPC555 (processor-in-the-loop)	
pc555rt.tlc	Embedded Target for Motorola MPC555 (real-time target)	
sek_leo.tlc	(Beta) LE/O (Lynx-Embedded OSEK) Real-Time Target	
sim.tlc	Rapid Simulation Target	
twin.tlc	Real-Time Windows Target	
twsfcn.tlc	S-function Target	
i_c6000.tlc	Target for Texas Instruments(tm) TMS320C6000 DSP	
ornado.tlc	Tornado (VxWorks) Real-Time Target	
pctarget.tlc	xPC Target	
election: C:\MATLAB	<pre>6p5\rtw\c\I_8xx8\I_8xx8.tlc</pre>	

Step 5: And select the "ERT code generation options" (for MATLAB 6.1) or "ERT code generation options (1)" (for MATLAB 6.5) in the Category field. Then check the Terminate function required and Single output/update function options on the pane.

Simulation Parameters: pid
Solver Workspace I/O Diagnostics Advanced Real-Time Workshop
Category: ERT code generation options (1)
Options MAT-file logging
Integer code only
🥅 Initialize internal data
Initialize external I/O data
Terminate function required
Single output/update function
Insert block descriptions in code
OK Cancel Help Apply

Step 6: For MATLAB 6.5, you have to select "ERT code generation options (3)" from the Category field. Then cancel the option Generate an example main program.

🜗 Simulation Parameters: pid 📃 🔲 🗙
Solver Workspace I/O Diagnostics Advanced Real-Time Workshop
Category: ERT code generation options (3)
Options Generate an example main program
Target operating system: BareBoardExample
🗖 Generate reusable code
Reusable code error diagnostic: Error
Suppress error status in real-time model data structure
Target floating point math environment: ANSI_C
OK Cancel Help Apply

Step 7: When the above steps are done, click the Build button to start the build process. After the process ends successfully, the message in the MATLAB command window looks like as the following figure.

Note:

The name of the model cannot be over 4 characters. (This is due to the limitation of Turbo C/C++ Compiler.)

3.4. Program downloading & data uploading

After the build process is completed, you can download the executable file generated to the I8xx8 embedded controller in the following way:

Enter **gui8000** at the MATLAB prompt, and the GUI dialog box appears. It provides two communication modes, RS232 and TCP/IP, for you to download application program.

📣 18000 Series User Interfa	асе	
RS232 TCP/IP		
Serial Port		Connect
СОМ1 💌	Baudrate Stop 115200 ▼	Stop
	Parity Data	Download
	Message	Upload
	RS232 Mode	Exit GUI
STATUS	Not Connected	

In RS232 mode, please follow steps to download the program to the I-8xx8 target system for application:

- Step 1: Turn on the I8xx8 control system and set I8xx8 control system in OS mode—it means that you must accomplish the step1 to step3 of Appendix A before you download your program.
- **Step 2:** Enter **gui8000** command at the MATLAB prompt and the GUI dialog box appears.
- Step 3: Select the serial port you use in the PC to connect to the I8xx8 control system. Then set *Baud rate*, *Parity*, *Data bits*, *Stop bit* as '115200, none, 8, 1'. The default baud rate of the I8xx8 control system is 115200.

Step 4: Close 7188xw.exe first and then click the *Connect* button. If the connection is successful, the message, "Connection is established' on the dialog box", will show up.

📣 I8000 Series User Interface	
RS232 TCP/IP	
Serial Port	Connect
COM2 Baudrate Stop	Start
Parity Data	Download
Message	Upload
Connection is established	Exit GUI
STATUS Not Connected	

Step 5: Now it's time to download your program. Click the *Download* button and the *Select File to Download* dialog box appears. Select the file you want to download to the I8xx8 control system and press the OK button to close the dialog box and then the download process starts.

Select File to	Download				<u>?</u> ×
Look in: 🔁	Demos	-	🗢 🔁	-111 📩	
🗋 sfprj					
d001					
File name:	4001			One	
i no rianto.					<u> </u>
Files of type:	×.exe		•	Cano	el

Step 6: On the dialog box that appears, you can see the progress of program downloading. Then you can click the *Start* button to run your control program after the progress of program downloading was finished.

		8438/8838 User Manua	
🌗 18000 Series User Interfa	ce		
RS232 TCP/IP			
Serial Port		Connect	
COM2	Baudrate Stop	Start	
	Parity Data	Download	
		🗵 Upload	
Download 54%			
] Exit GUI	
	'		
STATUS	Not Connected		

- Step 7: After you execute the program successfully, then you can click the Upload button to collect the data from the I8xx8 control system, and data will be saved in a file whose name is the filename you assigned in the DataToFile dialog box. This data file will be placed in the current working directory.
- **Step 8:** Click the *Exit* button or is on the right-upper corner to close the GUI dialog box.

To download the program in TCP/IP mode, click on the *TCP/IP* tab on the GUI dialog box. The panel on the dialog box changes as below figure.

📣 I8000 Series User Interface	
RS232 TCP/IP	
Connect to :	Connect
IP 61 221 131 37	Stop
Port 10000	Download
	Upload
Message	
TCP/IP Mode	Exit GUI
STATUS Not Connected	

In **TCP/IP mode**, you must specify IP and Port of the I-8x38 control system on the pane of the dialog box and **set I8xx8 control system in Firmware mode**—it means that you can use the step8 of Appendix B to restart the firmware before you download your program.

Then in a similar manner, connect to the I8xx8 control system, download the program and start it, and upload the data from the I8x38 control system. Note: The default port of the I-8x38 control system is 10000. If you assign an incorrect value, then you will not be able to connect to it.

3.5. Working with Stateflow

What is Stateflow?

Stateflow is a graphical design and development tool for control and supervisory logic. Using Stateflow you can:

- Visually model and simulate complex reactive systems based on finite state machine theory.
- > Design and develop deterministic, supervisory control systems.
- Easily modify your design, evaluate the results, and verify the system's behavior at any stage of your design.

To get more information about the Stateflow, please visit the website http://www.mathworks.com/products/stateflow.

How to work with Stateflow

To convert your Simulink model containing the Stateflow charts to a target program, you have to configure the related options. In the first place, it is necessary to configure the RTW options as stated in section 3.4. Second, you need to adjust the Stateflow Coder options to the I-8xx8 control system. To configure the Stateflow Coder options, just do the steps as follows:

Step 1: Click *Simulation parameters* from the *Simulation* menu. On the *Simulation Parameters* dialog box that appears, click the *Real-Time Workshop* tab and then the pane changes.

📣 Simulation Parameters: d002
Solver Workspace I/O Diagnostics Advanced Real-Time Workshop
Category: Target configuration
Configuration
System target file: 1_8xx8.ttc Browse
Template makefile: I_8xx8.tmf
Make command: make_i8000
Generate code only Stateflow options
OK Cancel Help Apply

Step 2: Then click *Stateflow options* and the *Stateflow RTW Target Builder* dialog box appears as shown in the figure below.

📣 Stateflow RTW Target Builder	<u>- 0 ×</u>
Target Name: rtw (Real-Time Workshop)	
Parent: (machine) sf01	
Target Language: ANSI-C	
Real-Time Workshop build	RTW Build
Target Options Coder Options	
Use settings for all libraries	
Description:	
Document Link:	
ID# 46 OK Cancel	Help Apply

Step 3: Click *Coder Options...* to open the Stateflow RTW Coder Options dialog box. On the dialog box, check the two options:

Use chart names with no mangling Use bitsets for storing state configuration

Then click OK to apply the setting you made and close the dialog box.

4	🌽 Stateflow RTW Coder Options 📃 🔲	×
	Target Name: rtw (Real-Time Workshop)	
	Coder Options	
	Comments in generated code	
	Preserve symbol names	
	Append symbol names with parent names	
,	Use chart names with no mangling	
ς	Use bitsets for storing state configuration	
	Use bitsets for storing boolean data	
	ID# 46 OK Cancel Help Apply	

Step 4: Then click the *RTW Build* button on the *Stateflow RTW Target Builder* to start the build process. When the build process is completed successfully, an executable file is created in the current directory.

8438/8838 User Manual

秒 Stateflow RTW Target Builder	- O ×
Target Name: rtw (Real-Time Workshop)	
Parent: (machine) sf01	
Target Language: ANSI-C	
Real-Time Workshop build	TWBuild
Target Options Coder Options	CI VV Dund
Use settings for all libraries	
Description:	
Document Link:	lp Apply

3.6. Working with Fixed- Point Blockset

What is Fixed-Point Blockset?

The Fixed-Point Blockset enables you to design control systems and digital filters that will be implemented using fixed-point arithmetic. With it, you can convert from floating-point to fixed-point modeling without changing any blocks. When combined with Real-Time Workshop, the blockset enables you to generate an efficient, integer-only C code representation of your model. When used with Real-Time Workshop Embedded Coder, the blockset lets you generate real-time C code for use on a fixed-point target. To get more information about the Fixed-Point blockset, please visit the website, http://www.mathworks.com/products/fixpoint.

How to work with Fixed-Point Blockset (Only for MATLAB 6.1)

As stated above, the Fixed-Point Blockset lets you generate real-time C code for use. However, for the I8xx8 control system, you need to modify the target language compiler file, fixedpttarget.tlc, which is located on the path matlabroot\toolbox\fixpoint\tlc_c\. Open the file and rewrite *IntNumBits 32* in the 134th row as *IntNumBits 16* as the figure below shown.

The reason is that the turbo C/C++ compiler or compatible defines the data type, int, as 2 bytes, equivalent to 16 bits. Nevertheless, it is defined as 4 bytes, equivalent to 32 bits, in the MATLAB environment. To let the build process complete successfully, you have to do as stated above.

4. Demos

In the following sections, we will show you the usage of the I-8000 driver blocks by a series of demos, including DI, DO, AI, AO, Relay, and Encoder.

4.1. DI & DO Modules

Introduction

Digital I/O interfaces are frequently used for the control system. In this section, we will guide users how to use the DI and DO driver block by an I-8053 module and an I-8057 module.

The I-8057 driver block expects a value smaller than 65535 from its input port. This is because I-8057 module is a 16-channel digital input module. If you assign a value 5 to the I-8057 module, then channel 0 and channel 2 of the I-8057 module will be set ON.

The I-8053 driver block will output a value 1 from the individual port if the corresponding channel of the module acquires a digital input. Otherwise, it will output a value 0.

Demonstration

This demonstration uses 2 DO channels of I-8057 module and 2 DI channels of I-8053 module to test the digital input and digital output function. The digital output channels are connected to digital input channels. The following steps describe how to create and implement the experiment of digital input/output modules.

Step 1: Create a new model window and copy SYS_INIT, I-8053, and I-8057 blocks from the System, DI, and DO library to the model window respectively.

Step 2: Double-click on the SYS_INIT block to open the dialog box. On the dialog box that appears, select the correct target hardware type from the field, Target Hardware Type. In this demo, the target hardware is selected as I-8838.

Block Parameters: SYS_INIT	1
-I8838-Simulink link (mask)	1
Initialize the I-8000 control system.	
- Parameters	1
Target Hardware Type: 18838	
I8438	
OK Cancel <u>H</u> elp Apply	

Step 3: Double-click on the I-8053 block, and then the dialog box appears. To use the first two channels of I-8053 module, enter [0 1] in the field "Input channel". And select the slot where the I-8053 module was mounted from the drop-down list.

Block Parameters: I-8053	×
S-Function (mask)	
Isolated digital input module(single ended).	
Parameters	
Input channel :	
Slot: 1	•
OK Cancel <u>H</u> elp <u>A</u> pply	

Step 4: In a similar manner, open the I-8057 dialog box and select the slot where I-8057 module is mounted.

Block Parameters: I-8)57			×
_S-Function (mask)				
Isolated O.C. output	module.			
Peremetere				
Slot · D				
	Course 1	II-l-	() () () () () () () () () ()	. 1
	Cancel	Help		

- Step 5: Copy two Gain and one Sum blocks to the model window from the SimulinkWath (for MATLAB 6.1) or SimulinkWath Operations (for MATLAB 6.5) library.
- Step 6: Connect all the blocks as shown in the following figure.

^{8438/8838} User Manual, Feb/2004, Ver.1.0, 8MS-004-01 ----- 36
- Step 7: Click Simulation parameters from the Simulation menu on the model window. On the dialog box that appears, configure the RTW options (refer to section 3.3). And then click Build button to start the build process.
- **Step 8:** When the build process ends successfully, download the control program generated to the I-8x38 and start it.

4.2. Al Modules

In this section, we will describe how to use the AI driver block, and a demo model will be presented.

Floating or Hex Input Type

The AI driver block supports two types of input values, *floating* and *hex*. When the input type is set to *floating*, the output port will output a value, which is the same with the voltage measured from the corresponding channel. If the input type is set to *hex*, the output port will output a value between *-8192* and *8191* (This value is affected by the *Voltage range*; ex. When the *voltage range* is set to +/-10V, the output port will output a value *-4096* while the corresponding channel acquires a *-5V* analog input.).

Block Parameters: I-8017H	×
S-Function (mask)	7
14-bit 100K sampling rate, 8-channel analog input module.	
Parameters	
Channel :	
[01234567]	
Voltage range : +/- 10V	
Slot: 0	
Type of Value : Floating	
OK Cancel <u>H</u> elp <u>Apply</u>	

Demonstration

This demonstration uses 1 *I-8017H* and 1 *DataToFile* driver block to test the analog input function. By using the *DataToFile* driver block, the data acquired from the I-8017H module can be uploaded to PC for analysis. The following steps describe how to create and implement the experiment.

Step 1: Create a new model window and copy SYS_INIT, I-8017H, and *DataToFile* blocks from the System and AI library to the model window respectively.

Step 2: Double-click on the SYS_INIT block to open the dialog box. On the dialog box that appears, select the correct type of target hardware from the field, "Target Hardware Type". In this demo, the target hardware is chosen as I-8838.

Block Parameters: SYS_INIT	×
- I8838-Simulink link (mask)	
Initialize the I-8000 control system.	
Parameters Target Hardware Type: 18838	
18438	
OK Cancel <u>H</u> elp	<u>Apply</u>

Step 3: Double-click on the I-8017H block, and then the dialog box appears. In this demo, we use all the channels, so enter [0 1 2 3 4 5 6 7] in the "Channel" field. Then set voltage range as +/-10V, and specify the slot where I-8017H module is mounted. Finally, set *Type of Value* to *Floating*.

Block Parameters: I-8017H	×
S-Function (mask)	
14-bit 100K sampling rate, 8-channel analog input module.	
Personatem	
Channel :	
[01234567]	
Voltage range : +/- 10V	лİ
	- 1
Slot: 0	-
Turne of Walnut I mark	- 1
Type of value : Floating	
OK Cancel <u>H</u> elp <u>Apply</u>	

Step 4: In a similar manner, open the DataToFile dialog box and specify the filename in the "Filename" field. Enter 1 in the "Decimation" field, and then the analog input signal will be recorded in every sampling time interval.

Ē	Block Parameters: DataToFile	×
	Write time and input to specified MAT file in row format. Time is in row 1.	
<	Parameters Filename : savefile mat	
(OK Cancel <u>H</u> elp <u>Apply</u>	

- Step 5: Copy one Mux block to the model window from the Simulink\Signals & Systems (for MATLAB 6.1) or Simulink\Signal Routing (for MATLAB 6.5) library.
- Step 6: Connect all the blocks as shown in the figure below.

8438/8838 User Manual, Feb/2004, Ver.1.0, 8MS-004-01 ----- 40

- Step 7: Click Simulation parameters from the Simulation menu on the model window. When the dialog box appears, configure the RTW options (refer to section 3.3). And then click Build button to start the build process.
- **Step 8:** When the build process ends successfully, download the control program generated to the I-8x38 and upload the experiment data for further analysis (refer to section 3.4).
- Step 9: If the stop time that you specified is up, you can start the data uploading. After the uploading process is completed, use the built-in MATLAB scripts to plot the result. It would look like the figure below. For Example:

plot (tcpdata(1, :), tcpdata(2, :))

4.3. AO Modules

This section attempts to make you familiar with the usage of the I-8024 module, which is a 4-channel and 14-bit analog output module. In the beginning of this section, we will give you a detailed introduction of the I-8024 driver block. And then a demonstration will be presented in the rest of this section.

Introduction to I-8024 driver block

On the dialog box of the I-8024 driver block, you can select the outputs of the I-8024 module as either "Voltage Out" or "Current Out". If you select "Voltage Out" in the "Output Mode" field, an output range between +10V and -10V will be available; otherwise, a current between 0 and 20 mA will be instead.

Block Parameters: I-8024
S-Function (mask)
4-channel 14-bit analog output module.
- Parameters
Output Mode Voltage Out
Output Channel Voltage Out
[0 1 2 3]
Gain :
1
Slot: 0
Type of Value : Floating
OK Cancel <u>H</u> elp <u>Apply</u>

Furthermore, the input type of the I-8024 driver block can be either "Floating" or "Hex".

Block Parameters: I-8024
S-Function (mask)
4-channel 14-bit analog output module.
Parameters
Output Mode : Voltage Out
Output Channel :
[0 1 2 3]
Gain :
1
Slot: 0
Type of Value Floating
Floating
OK Cancel <u>H</u> elp <u>A</u> pply

Demonstration

In this demo, we use 1 channel of the I-8024 module and 1 channel of the I-8017H module. Then channel 0 of I-8024 module is physically connected to channel 0 of I-8017H module. After the physical wire connection is done, send a sine wave to the input port of the I-8024 driver block. The following figures describe the steps by which this demo is created and implemented.

Step 1: Create a new model in Simulink and insert a SYS_INIT block from the System block library.

	\sim
<u>File Edit View H</u> elp	
🗋 🚔 – 🛱 Find	
SYS_INIT: Initialize the I-8000 control system.	
Control System Toolhoy	
DSP Blockset	
🕀 🙀 Dials & Gauges Blockset	
Embedded Target for ICPDAS	
- 2 Al	
AO	
DO .	
Encoder	
BELAY	
System	
🗈 🖬 Embedded Target for Motorola	

Step 2: Copy the DataToFile block from the System block library to the model.

🙀 Simulink Library Browser		×
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>H</u> elp		
🗋 😂 – 🛱 Find		
DataToFile: Write time and input to specified MAT	file in row format. Time	is
in row 1.		
		_
Embedded Target for ICPDA	DataTo	File
	KPDes SVS IN	ΠТ
	Sotoresee Corneler	
- PH DIO		
DO		
Encoder		
- B RELAY		
System		

8438/8838 User Manual, Feb/2004, Ver.1.0, 8MS-004-01 ----- 43

Step 3: In a similar manner, insert an I-8024 block and an I-8017H block separately from the AO and AI block library.

, , , , , , , , , , , , , , , , , , ,	
🙀 Simulink Library Browser 📃	
<u>File Edit View H</u> elp	
🗋 🚔 – 🛱 Find	
I-8017H : 14-bit 100K sampling rate, 8-channel analog input module.	
I-8017H	\supset
Dials & Gauges Blockset	
Embedded Target for ICPDAS	
🛛 🔜 Control System Toolbox 🛛 📝	1-9024
🗈 📓 DSP Blockset	1-0024
Dials & Gauges Blockset	
AO AO	
DI	
— 查 DIO	

Step 4: Double click on the I-8024 block to setup the AO module. Here we use channel 0 of the I-8024 module, which is mounted on slot 2 of the I-8xx8 embedded controller. And the output mode is set to "Voltage Out"; the type of value is selected as "Floating".

File Edit View Simulation Format Tools	Lelp
	▶ = Normal 💌 🖽 🗐 😷
Block Parametern: I-8024	X
S-Punchon (mask) 4-channel 14-bit analog output module.	
Parameters	
Output Mode: Voltage Out	
	► 0
Gain :	
Slot: 2	18024
Type of Value Floating	
	PataToFile Block
OK Cancel Help Apply	DataToFile
L8017H	
Keady 100%	ForedStepDescrete

- **Step 5:** As to the setting of SYS_INIT and I-8017H, please refer to the section 4.1 and 4.2.
- **Step 6:** Add a Sin Wave block from the Simulink\Sources library.

Step 7: Connect all blocks as shown in the figure below.

8438/8838 User Manual, Feb/2004, Ver.1.0, 8MS-004-01 ----- 45

- Step 8: Click Simulation parameters from the Simulation menu to open the Simulation Parameters dialog box. Then configure the RTW options (refer to section 3.3) and press the Build button to start the build process.
- **Step 9:** When the build process ends successfully, download the .exe file generated to the I-8x38 and run (refer to section 3.4).
- Step 10: If the stop time that you specified is up, you can start the data uploading. After the uploading process is completed, use the built-in MATLAB scripts to plot the result. It would look like the figure below. For Example:

plot (tcpdata(1, :), tcpdata(2, :))

4.4. Relay Modules

In the area of automatic control, the relay component is frequently used as a voltage-activated switch, consisting of a bi-directional switched connections and a switching input. The I-8000 series module MATLAB Driver also provides the relay driver block to facilitate your design. In the following subsection we demonstrate the usage of this block.

Introduction to Relay driver block

Basically, the relay modules provided by ICP DAS are categorized into two forms, form A and form C. The figure below shows the difference between them.

The relay of form A is represented by the I-8064, and the relay of form C is represented by the I-8060. No matter which form a relay is, however, the usage of the driver block is the same. The individual input port of the driver block expects a value greater than 0 to activate the corresponding physical relay output. In other words, if you assign a value 1 to the channel of the relay driver block, the connection of the relay will be switched to NO.

On the dialog box of the relay driver block shown in the figure below, you can select the channels, which are used by entering a row vector in the field of "Relay Channel". And remember to choose the correct slot where the relay module is mounted.

Block Parameters: i8060_0
S-Function (mask)
A Form C, 6-channel relay output module.
Parameters
Relay Channel :
[0 1 2 3 4 5]
Slot : 0
OK Cancel <u>H</u> elp <u>Apply</u>

8438/8838 User Manual, Feb/2004, Ver.1.0, 8MS-004-01 ----- 47

Demonstration

This demo uses an I-8060 relay module and an I-8053 DI module to setup the experiment. Channel 0 of the I-8053 module is connected to a limit switch. When channel 0 of the I-8053 module is activated, it will cause the channel 0 of the I-8060 module switch to NO. The following steps describe how this demo is created and implemented.

Step 1: Create a new model in Simulink and insert a SYS_INIT block from the System block library.

🙀 Simulink Library Browser	
<u>File E</u> dit <u>V</u> iew <u>H</u> elp	
🗋 🚔 – 🖾 Find	
SYS_INIT: Initialize the I-8000 control system.	
	Г
Control System Toolbox	DataToFile
E B DSP Blockset	
Embedded Target for ICPDAS	SYS_INIT
- 🔄 DIO	
_ 월 DO	
Encoder	
B Creature	
B hyperided larget for Motorola	

Step 2: Copy an I-8053 block and an I-8060 block separately from the DI and RELAY block library.

Step 3: Double click on the I-8060 block to setup the relay module. Here we use channel 0 of the I-8060 module, which is mounted on slot 1 of the I-8x38 embedded controller.

Block Parameter	: I-8060			2
-S-Function (m	ask) ———	 		
Relay output m	odule.			
Pommotom		 		
Palay Channel	1.			
Kelav Citalille	ι.			
Slot : 1	5			
	<u></u>	 		
	_		_	
OK	Cancel	<u>H</u> elp	<u>Apply</u>	

- **Step 4:** Configure the SYS_INIT and the I-8053 block. (Please refer to the section 4.1.)
- Step 5: Connect all blocks as shown in the figure below.

- Step 6: Click Simulation parameters from the Simulation menu to open the Simulation Parameters dialog box. Then configure the RTW options (refer to section 3.3) and press the Build button to start the build process.
- **Step 7:** When the build process ends successfully, download the .exe file generated to the I-8x38 and run it (refer to section 3.4).

4.5. Encoder Module

In most applications of motion control, encoder input modules are used to accept signals from encoders on the motors. Therefore, the I-8000 series module MATAB Driver also provides the driver block for I-8090, which is a 3-axis encoder counter board on I-8000 platform. By using the I-8000 series module MATLAB Driver, you can design your motion controller easily and quickly. In the following paragraphs, we will show you the usage of the I-8090 driver block.

Introduction of I-8090 driver block

On the dialog box of I-8090 driver block, you can select the counting mode of the I-8090 among *Quadrant*, *CW/CCW*, and *pulse/direction*. The setting in this field must match with your wire connections. Otherwise, the measurement of data will not be correct. To get more information about wire connections, please refer to the I-8090/8091 user's manual.

Block Parameters: I-	8090		2	<
_S-Function (mask)			1
3-axis encoder cou	unter board			
Parameters —				1
Card NO. :				
1				
Counting Mode	Onedwart			
Counting Model	Quantant			
Axis :	CW/CCW			
[1 1 1]	Pulse/Direction			
Slot : 0			•	
ОК	Cancel	<u>H</u> elp	Apply	

The difference among quadrant, CW/CCW, and pulse/direction counting modes is shown in the following figures.

Quadrant counting mode

CW/CCW counting mode

Pulse					
counter	1	2	3	2	1

Pulse/Direction counting mode

Besides, you must specify a value smaller than 19 in the "Card NO" field on the dialog of I-8090 driver block. This value is used to identify different I-8090 encoder cards, and hence the same number cannot be assigned to different I-8090 modules.

Block Parameters: I-8090
S-Function (mask)
3-axis encoder counter board
Parameters
Card NO.:
1
Counting Mode: Quadrant
Axis :
[1 1 1]
Slot : 0
OK Cancel <u>H</u> elp <u>A</u> pply

Demonstration

This demo uses an I-8024 AO module to drive the motor and an I-8090 encoder input module to accept the signals from the encoder of the motor. And we also add a DataToFile block to the model for data recording. Here, we will show you the procedure step by step.

Step 1: Create a new model in Simulink and insert a SYS_INIT block from the System block library.

🙀 Simulink Library Browser		_ 🗆 🗙
<u>File E</u> dit <u>V</u> iew <u>H</u> elp		
🗅 🚔 – 🛱 Find		
SYS_INIT: Initialize the I-8000 control system.		
🚽 💽 Control System Toolbox 📃	KPD66 DauToFile	Dete To File
🗈 😡 DSP Blockset	Mech	
🕀 💓 Dials & Gauges Blockset	KPDe	ANA INIT
Embedded Target for ICPDAS	Enterior Carolar	STS_INIT
DIO		
DO DO		
- Encoder		
- BELAY		
System		
🗄 🖬 Embedded Target for Motorola		

Step 2: Insert an I-8024 block and an I-8090 block separately from the AO and Encoder block library.

Simulink Library Browser File Edit Yiew Help	
I-8024 : 4-channel 14-bit analog output module.	
CDMA Reference Blockset	I-8024

Step 3: Double click on the I-8090 block to setup the encoder module. Here we use X-axis of the I-8090 module, which is mounted on slot 1 of the

I-8xx8 embedded controller. And select the counting mode as "Quadrant" and assign "Card NO" to 1.

Block Parameters: I-8090	×
S-Function (mask)	
3-axis encoder counter board	
Parameters-	
Card NO. :	
Counting Mode Quadrant	
Axis:	
Slot :	
OK Cancel <u>H</u> elp <u>Apply</u>	

- **Step 4:** Configure the SYS_INIT and the I-8024 block. (Please refer to the section 4.1 and 4.3.)
- **Step 5:** Add a DataToFile block from the System block library, and use it to store the data of the encoder. At the same time, insert a Constant block to send the voltage command to the I-8024 block.
- Step 6: Connect all blocks as shown in the following figure.

8438/8838 User Manual, Feb/2004, Ver.1.0, 8MS-004-01 ----- 53

- Step 7: Click Simulation parameters from the Simulation menu to open the Simulation Parameters dialog box. Then configure the RTW options (refer to section 3.3) and press the Build button to start the build process.
- **Step 8:** When the build process ends successfully, download the .exe file generated to the I-8x38 and run it (refer to section 3.4).

5. Matlab Driver Block Reference

This section presents detailed descriptions and usage of all blocks in the MATLAB Driver block library.

SYS_INIT

Description:

Initialize the I-8xx8 control system.

Library:

System

Dialog Box:

Block Parameters: SYS_INIT	×
- I8838-Simulink link (mask)	
Initialize the I-8000 control system.	
Parameters	
Target Hardware Type : 18838	•
18438	
OK Cancel <u>H</u> elp Apply	

Driver Block Parameters:

Target Hardware Type - The type of the I-8xx8 control system that is used. The setting must match with the actual situation; otherwise, it might cause unexpected problems. The following table presents a list of the types available and the difference between them.

ТҮРЕ	Slots Available	
I-8438	4	
I-8838	8	

DataToFile

ICPDAS DataToFile Block
DataToFile

Description:

Write time and input to specified MAT file in row format. Time is in row 1.

Library:

System

Dialog Box:

Block Parameters: DataToFile	×				
S-Function (mask)					
Write time and input to specified MAT file in row format. Time is in row 1.					
- Parameters					
Filename :					
savefile.mat					
Decimation :					
1					
OK Cancel <u>H</u> elp <u>Apply</u>					

Driver Block Parameters:

Filename - The fully qualified filename of the MAT-file in order to store the data. The default filename is savefile.mat. The file will be stored in the current working directory.

Decimation - A decimation factor. The default value is 1. This parameter allows you to write data at every nth sample, where n is the decimation factor.

ReadFromEEP

>	Block	D -4-	
>	Addr	Data	P
	ReadFromEEP		

Function:

Read data from EEPROM

Library:

System

Description:

In this block, there provides no parameter for users to set. To use this block properly, what users have to do is to assign the intended value to input ports, Block and Addr. And the data read from eeprom will be exported to the "Data" port. More details of these ports are given as follows:

- Block This parameter specifies the number of the eeprom's block, from which you want to read. For I-8438/8838, its range is between 0 and 7.
- Addr A value between 0 and 255 is acceptable. In I-8438/8838, the eeprom is divided into 8 blocks, and each block is 256 bytes in size. Therefore, you would assign 1 to the "Block" port and 234 to the "Addr" port, if you want to obtain the data of Block 1, Offset 234.
- **3. Data** This port is used to output the data read. It will output a value between 0 and 255.

WriteToEEP

>	Addr		
Y	Data		
		WriteToEEP	

Function:

Write data to EEPROM

Library:

System

Description:

This block is used to write data to EEPROM, one byte per loop. To operate this block correctly, you need to keep some details in mind. They are given as follows:

- Block In the I-8438/8838 control system, the eeprom is divided into 8 blocks. The number of the block is counted from 0 to 7. Because block 7 is reserved for MINIOS7, however, users shouldn't assign the value, 7, to this port.
- 2. Addr In each block of the eeprom, it is 256 bytes in size. So users can assign a value between 0 and 255 to this port.
- Data The data that you want to write to the eeprom. A value 0 ~ 255 is meaningful.

I-8017H

	0>
	1
	26
	зþ
	46
	50
	66
	7 >
I-8017H	

Description:

8-channel Isolated Analog Input Module.

Library:

AI

Dialog Box:

Block Parameters: I-8017H			
S-Function (mask)			
14-bit 100K sampling rate, 8-channel analog input module.			
Permutan			
Channel ·			
[01234567]			
Voltage range : +/- 1.25V			
Slot: 0			
Type of Value : Floating			
OK Cancel <u>H</u> elp <u>A</u> pply			

Driver Block Parameters:

Channel - Enter numbers between 0 and 7. This block allows the selection of analog input lines in any order. The number of elements defines the number of analog inputs used. For example, to use the first 8 analog inputs, enter [0 1 2 3 4 5 6 7]

Voltage range - The I-8017H, AI module, provides 4 ranges of the input voltage, and they are +/-10V, +/-5V, +/-2.5V, and +/-1.25V.

Slot - The number of the slot where I-8017H module is located. For example, choose 2 from the popup list if you have mounted an I-8017H module on slot 2.

Type of Value - Floating or Hex is available. The table below presents the list of ranges of the input voltage.

8438/8838 User Manual

Type of Value	Hardware Input	Block Output Value
Floating	-10 ~ 10V	-10 ~ 10
Hex	-10 ~ 10V	-8192 ~ 8191
Floating	-5 ~ 5V	-5 ~ 5
Hex	-5 ~ 5V	-8192 ~ 8191
Floating	-2.5 ~ 2.5V	-2.5 ~ 2.5
Hex	-2.5 ~ 2.5V	-8192 ~ 8191
Floating	-1.25 ~ 1.25V	-1.25 ~ 1.25
Hex	-1.25 ~ 1.25V	-8192 ~ 8191

ſ			
X	0		
X	1		
X	2		
X	з		
		1-8024	

Description:

4-channel Isolated Analog Output Module.

Library:

AO

Dialog Box:

Block Parameters: I-8024
S-Function (mask)
4-channel 14-bit analog output module.
Parameters
Output Mode : Voltage Out
Output Channel :
[0 1 2 3]
Gain :
1
Slot: 0
Type of Value : Floating
OK Cancel <u>H</u> elp <u>A</u> pply

Driver Block Parameters:

Output Mode – Voltage Out or Current Out is available.

- Voltage Output -> +/-10V
- Current Output -> 0~20mA

Output channel - Enter numbers between 0 and 3. This block allows the selection of analog output lines in any order. The number of elements defines the number of analog outputs used. For example, to use the first 4 analog outputs, enter [0 1 2 3]

Gain - A multiplier. The default value is 1.

Slot - The number of the slot where I-8024 module is located. For example, choose 2 from the popup list if you have mounted an I-8024 module on slot 2.

Type of Value - Floating or Hex is available. The following table presents the difference between them.

Type of Value	Block Input Data Range	Hardware Output
Floating	-10 ~ 10 (Voltage Out)	-10 ~ 10V (Voltage Out)
	$0 \sim 20$ (Current Out)	0 ~ 20mA (Current Out)
Hex	0 ~ 16383 (Both)	-10 ~ 10V (Voltage Out)
		0 ~ 20mA (Current Out)

Description:

32-channel Isolated Digital Input Module.

Library:

DI

Dialog Box:

Block Parameters: I-8040	×
_S-Function (mask)	
32-channels digital input module.	
- Parameters	
Input channel :	
[0123567]	
Slot : 📋	
OK Cancel <u>H</u> elp <u>Apply</u>	

Driver Block Parameters:

Input channel - Enter numbers between 0 and 31. This block allows the selection of individual digital input lines in any order. The number of elements defines the number of digital inputs used. For example, to use the first 8 digital inputs, enter

[0 1 2 3 4 5 6 7]

Slot - The number of the slot where I-8040 module is mounted. For example, choose 2 from the popup list if you have mounted an I-8040 module on slot 2.

Hardware Input	Block Output Value
Below 3.5V	= 0
3.5V ~ 30V	= 1

	Digital Ou	utput	
	Slot :	0	
L	I-8041		

Description:

32-channel Isolated Digital Output Module.

Library:

DO

Dialog Box:

C. Employ (mode)
S-Function (mask)
32-channels digital output module.
Parameters
Slot: 0
OK Cancel Help Apply

Driver Block Parameters:

Slot - The number of the slot where I-8041 module is located. For example, choose 2 from the popup list if you have mounted an I-8041 module on slot 2.

BLOCK INPUT VALUE	HARDWARE OUTPUT	
0	All channels are off.	
1	Ch0 is on, and the others are off.	
2	Ch1 is on, and the others are off.	
2 [^] 32 - 1	All channels are on.	

		InUþ
		In1>
		In2 >
		In3 þ
7	DO_Val	In4þ
		In5 þ
		In6 >
		In7 >
	1-8042	

Description:

16-channel Isolated Digital Input & 16-channel Isolated Digital Output Module.

Library:

DIO

Dialog Box:

Block Parameters: I-8042
S-Function (mask)
16-channels digital input & output module.
Parameters
DI Channel :
[01234567]
Slot : 🚺
OK Cancel <u>H</u> elp <u>A</u> pply

Driver Block Parameters:

DI Channel - Enter numbers between 0 and 15. This block allows the selection of digital input lines in any order. The number of elements defines the number of digital inputs used. For example, to use the first 8 digital inputs, enter [0 1 2 3 4 5 6 7]

Slot - The number of the slot where I-8042 module is located. For example, choose 2 from the popup list if you have mounted an I-8042 module on slot 2.

Scaling Input to Output (digital input):

Hardware Input	Block Output Value
Below 3.5V	= 0
3.5V ~ 30V	= 1

Scaling Input to Output (digital output):

Block Input Value	Hardware Output	
0	All channels are off.	
1	Ch0 is on, and the others are off.	
2	Ch1 is on, and the others are off.	
65535	All channels are on.	

Description:

16-channel Non-isolated Digital Input Module.

Library:

DI

Dialog Box:

Block Parameters: I-8051
_S-Function (mask)
16-channels non-isolated digital input module.
- Parameters
Input channel :
[0 1 2 3]
Slot : 🖸
OK Cancel <u>H</u> elp <u>Apply</u>

Driver Block Parameters:

Input channel - Enter numbers between 0 and 15. This block allows the selection of individual digital input lines in any order. The number of elements defines the number of digital inputs used. For example, to use the first 8 digital inputs, enter

[0 1 2 3 4 5 6 7]

Slot - The number of the slot where I-8051 module is mounted. For example, choose 2 from the popup list if you have mounted an I-8051 module on slot 2.

Hardware Input	Block Output Value
Below 1V	= 0
3.5V ~ 30V	= 1

Description:

8-channel Isolated Digital Input Module (Differential input).

Library:

DI

Dialog Box:

Block Parameters: I-8052		
_S-Function (mask)		
Isolated digital input module (Differential input).		
- Parameters		
Input channel :		
[0 1 2 3 4 5 6 7]		
Slot : D		
OK Cancel <u>H</u> elp <u>A</u> pply		

Driver Block Parameters:

Input channel - Enter numbers between 0 and 7. This block allows the selection of individual digital input lines in any order. The number of elements defines the number of digital inputs used. For example, to use the first 8 digital inputs, enter

[0 1 2 3 4 5 6 7]

Slot - The number of the slot where I-8052 module is located. For example, select 2 from the popup list if you have mounted an I-8052 module on slot 2.

Hardware Input	Block Output Value
Below 1V	= 0
3.5V ~ 30V	= 1

Description:

16-channel Isolated Digital Input Module (single ended).

Library:

DI

Dialog Box:

Block Parameters: I-8053	
S-Function (mask)	
Isolated digital input module(single ended).	
Parameters	
Input channel :	
[01234567]	
Slot : D	
OK Cancel <u>H</u> elp <u>A</u> pply	

Driver Block Parameters:

Input channel - Enter numbers between 0 and 15. This block allows the selection of individual digital input lines in any order. The number of elements defines the number of digital inputs used. For example, to use the first 8 digital inputs, enter

[0 1 2 3 4 5 6 7]

Slot - The number of the slot where I-8053 module is located. For example, select 2 from the popup list if you have mounted an I-8053 module on slot 2.

Hardware Input	Block Output Value
Below 1V	= 0
3.5V ~ 30V	= 1

		ln0 þ
		In1þ
	>DO_Val	In2 þ
		In3 þ
		In4þ
		In5 þ
		In6 þ
		In7 >
	1-8054	

Description:

16-channel Isolated Digital I/O Module.

Library:

DIO

Dialog Box:

Block Parameters: I-8054
S-Function (mask)
Isolated digital input & output module.
Parameters
DI Channel :
[01234567]
Slot : D
OK Cancel <u>H</u> elp <u>A</u> pply

Driver Block Parameters:

DI Channel - Enter numbers between 0 and 7. This block allows the selection of digital input lines in any order. The number of elements defines the number of digital inputs used. For example, to use the first 8 digital inputs, enter [0 1 2 3 4 5 6 7]

Slot - The number of the slot where I-8054 module is located. For example, choose 2 from the popup list if you have mounted an I-8054 module on slot 2.

Scaling Input to Output (digital input):

Hardware Input	Block Output Value
Below 1V	= 0
3.5V ~ 30V	= 1

Scaling Input to Output (digital output):

Block Input Value	Hardware Output	
0	All channels are off.	
1	Ch0 is on, and the others are off.	
2	Ch1 is on, and the others are off.	
255	All channels are on.	

		InOþ
	>DO_Val	In1þ
		In2 🛓
		In3 🖕
Y		In4 >
		In5 👂
		In6 🗟
	In7 >	
	1-8055	

Description:

16-channel Non-isolated Digital I/O Module.

Library:

DIO

Dialog Box:

Block Parameters: I-8055			
S-Function (mask)			
Non-isolated digital input & output module.			
Parameters			
DI Channel :			
[01234567]			
Slot : 0			
OK Cancel <u>H</u> elp <u>A</u> pply			

Driver Block Parameters:

DI Channel - Enter numbers between 0 and 7. This block allows the selection of digital input lines in any order. The number of elements defines the number of digital inputs used. For example, to use the first 8 digital inputs, enter [0 1 2 3 4 5 6 7]

Slot - The number of the slot where I-8055 module is located. For example, choose 2 from the popup list if you have mounted an I-8055 module on slot 2.

Scaling Input to Output (digital input):

Hardware Input	Block Output Value
Below 1V	= 0
3.5V ~ 30V	= 1
Scaling Input to Output (digital output):

Block Input Value	Hardware Output
0	All channels are off.
1	Ch0 is on, and the others are off.
2	Ch1 is on; the others are off.
255	All channels are on.

Digital C)utput	
Slot :	0	
1-8056	3	

Description:

16-channel Non-isolated O.C. Output Module.

Library:

DO

Dialog Box:

S-Function (mask) Non-isolated O.C. output module.
Non-isolated O.C. output module.
•
Parameters
OK Cancel <u>H</u> elp <u>Apply</u>

Driver Block Parameters:

Slot - The number of the slot where I-8056 module is located. For example, choose 2 from the popup list if you have mounted an I-8056 module on slot 2.

BLOCK INPUT VALUE	HARDWARE OUTPUT
0	All channels are off.
1	Ch0 is on, and the others are off.
2	Ch1 is on, and the others are off.
65535	All channels are on.

	Digital Output	
>	Slot: O	
	1-8057	

Description:

16-channel Isolated O.C. Output Module.

Library:

DO

Dialog Box:

Block Parameters: I-8057	×
S-Function (mask)	
Isolated O.C. output module.	
Parameters	ן ר
Slot : D	
OK Cancel Help Apply	

Driver Block Parameters:

Slot - The number of the slot where I-8057 module is located. For example, choose 2 from the popup list if you have mounted an I-8057 module on slot 2.

BLOCK INPUT VALUE	HARDWARE OUTPUT
0	All channels are off.
1	Ch0 is on, and the others are off.
2	Ch1 is on, and the others are off.
65535	All channels are on.

Description:

8-channel Isolated Digital Input Module.

Library:

DI

Dialog Box:

Block Parameters: I-8058
S-Function (mask)
8-channel Isolated Digital Input Module.
Parameters
Input channel :
[0 1 2 3 4 5 6 7]
Slot : D
OK Cancel <u>H</u> elp <u>A</u> pply

Driver Block Parameters:

Input channel - Enter numbers between 0 and 7. This block allows the selection of individual digital input lines in any order. The number of elements defines the number of digital inputs used. For example, to use the first 8 digital inputs, enter

[0 1 2 3 4 5 6 7]

Slot - The number of the slot where I-8058 module is located. For example, choose 2 from the popup list if you have mounted an I-8058 module on slot 2.

Hardware Input	Block Output Value
AC/DC 30V max.	= 0
AC/DC 80V mini	= 1

Description:

6-channel Relay Output Module.

Library:

RELAY

Dialog Box:

Block Parameters: I-8060
_S-Function (mask)
Relay output module.
- Parameters-
Relay Channel :
[0 1 2 3 4 5]
Slot : 🚺 🔽
OK Cancel <u>H</u> elp <u>Apply</u>

Driver Block Parameters:

Relay Channel - Enter numbers between 0 and 5. This block allows the selection of relay output lines in any order. The number of elements defines the number of relay outputs used. For example, to use the first 6 relay outputs, enter [0 1 2 3 4 5]

Slot - The number of the slot where I-8060 module is located. For example, choose 2 from the popup list if you have mounted an I-8060 module on slot 2.

Block Input Value	Hardware Output
> 0	Switch to NO
<=0	Switch to NC

Description:

8-channel Isolated Digital I/O Module.

Library:

DIO

Dialog Box:

Block Parameters: I-8063
S-Function (mask)
Isloated digital input & output module.
Parameters
Channel :
[0 1 2 3]
Slot : D
OK Cancel <u>H</u> elp <u>A</u> pply

Driver Block Parameters:

DI Channel - Enter numbers between 0 and 3. This block allows the selection of digital input lines in any order. The number of elements defines the number of digital inputs used. For example, to use the first 4 digital inputs, enter [0 1 2 3]

Slot - The number of the slot where I-8063 module is located. For example, choose 2 from the popup list if you have mounted an I-8063 module on slot 2.

Scaling Input to Output (digital input):

Block Output Value
= 0
= 1

Scaling Input to Output (relay output):

Block Input Value	Hardware Output
0	All channels are switched to NO.
1	Ch0 is switched to NO, and the others remain NC.
2.	Ch1 is switched to NO, and the others remain NC.
7	All channels are switched to NC.

γu		
1		
>2		
γз		
4		
>5		
>6		
7		
	1-8064	

Description:

8-channel Power Relay Output Module.

Library:

RELAY

Dialog Box:

Block Parameters: I-8064
S-Function (mask)
Power relay module.
Parameters
Relay Channel :
[0 1 2 3 4 5 6 7]
Slot : 🚺
OK Cancel <u>H</u> elp <u>A</u> pply

Driver Block Parameters:

Relay Channel - Enter numbers between 0 and 7. This block allows the selection of relay output lines in any order. The number of elements defines the number of relay outputs used. For example, to use the first 8 relay outputs, enter [0 1 2 3 4 5 6 7]

Slot - The number of the slot where I-8064 module is located. For example, choose 2 from the popup list if you have mounted an I-8064 module on slot 2.

Block Input Value	Hardware Output
> 0	Switch to NO
<=0	Switch to off

Function:

3-axis Encoder Input Module.

Library:

Encoder

Dialog Box:

Block Parameters: I-8090
S-Function (mask)
3-axis encoder counter board
Parameters
Card NO. :
1
Counting Mode: Quadrant
Axis :
[1 1 1]
Slot: 0
OK Cancel <u>H</u> elp <u>Apply</u>

Driver Block Parameters:

Card NO - The number is used to identify different I-8090 encoder input modules. A value between 0 and 19 is allowed.

Counting Mode - *Quadrant, CW/CCW,* and *pulse/direction* is available. This setting depends on the wire connections of the I-8090 encoder module.

Axis - The selected axis vector. The default value is [1 1 1]. Each of the elements in the vector is used to determine which axis is selected or not.

For example, if we enter [1 1 0] in the "Axis" field, the I-8090 driver block should look like as follows:

Slot - The number of the slot where I-8090 module is located. For example, choose 2 from the popup list if you have mounted an I-8090 module on slot 2.

Appendix A. Updating the OS of I-8438/8838

Before you start to update MiniOS7 on your I-8438/8838 embedded controller, 7188xw.exe is needed and can be found on the path CD:\Napdos\MATLAB\Firmware\1.00\. In addition, you can get the OS img file on the path, CD:\Napdos\MATLAB\OS_image\. To update MiniOS7 into a newer version, please follow these steps below. (Note: You shouldn't turn off the I-8438/8838 embedded controller during the update, or unexpected damage may be caused.)

- **Step 1.** First of all, connect an rs232 cable from COM1 on the PC to COM1 of the I-8483/8838. Then turn on the I-8438/8838.
- **Step 2.** Change to the directory where 7188xw.exe is located. Run 7188xw.exe and the following window shows up.

Step 3. Enter **Esc** to stop the execution of the firmware. When it was done, the window should look like this.

Step 4. Copy the firmware ***.img to the directory where 7188xw.exe is located. Then, enter upload at the prompt i8000E-80>. After the prompt message is displayed, press ALT+E to download the file ***.img.

Step 5. Then enter **bios1** and press Enter. The firmware updating starts automatically.

Appendix B. Updating the firmware

To update the firmware of your I-8438/8838 embedded controller, you can do as the following steps.

- **Step 1.** At first, connect an rs232 cable from COM1 on PC to COM1 of the I-8438/8838 embedded controller.
- Step 2. Turn on the I-8438/8838 embedded controller.
- **Step 3.** Change to the directory where 7188xw.exe is located and run 7188xw.exe.

Step 4. Then Enter Esc to stop the execution of the firmware.

8438/8838 User Manual, Feb/2004, Ver.1.0, 8MS-004-01 ----- 85

Step 5. Enter **delb** after the prompt of **i8000E-80>** to remove the original firmware. When the prompt message is displayed, press **y**.

- Step 6. Then copy the newer firmware mat_load.exe & autoexec.bat to the same directory.
- Step 7. Enter loadb at the i8000E> prompt. When the prompt message is displayed, press ALT+E to enter the filename. Here we enter mat_load.exe. In a similar manner, download the file, autoexec.bat, to the I-8438/8838.

Step 8. Enter **reset** to restart the firmware.

_ 🗆 × 🚾 7188XW 1.14 [COM1:115200,N,8,1] DIR=C:\matlabqc File will save to E000:0000 ٠ StartAddr-->D000:FFFF Press ALT_E to download file! Input filename:mat_load.exe Load file:mat_load.exe Send file info. total 206 blocks Block 206 Transfer time is: 6.490000 seconds i8000E-80>loadb File will save to ECDF:0006 StartAddr-->E000:CDF5 Press ALT_E to download file! Input filename:autoexec.bat Load file:autoexec.bat Send file info. total 1 blocks Block 1 Transfer time is: 0.050000 seconds i8000E-40>reset) Before connected:Socket(s)=0,MAXDAT=536,rxtout=20000 1

Appendix C. Change the IP of I-8438/8838

There provides two ways for users to change the IP, Mask and Gateway of I-8438/8838 embedded controller. One of them is through the GUI under MATLAB, and the other is through the push buttons on the S-MMI of the I-8438/8838. Next In the rest of this chapter, we will demonstrate you how to complete this work.

(Note: Before you continue to change the IP, Mask, and Gateway, make sure that the I-8438/8838 has been turned on.)

GUI under MATLAB

Step 1: Start MATLAB, and then enter gui8000 at the MATLAB prompt.

AMATLAB <u>File E</u> dit <u>V</u> iew	We <u>b W</u> indow <u>H</u> elp				<u>_ ×</u>
□ 🛩 🕺 🛙	h 🛍 က က 🎒 🕯	? Current Di	rectory: C:WATLAB6p5\wo	ork	_
Current Directory		XS	Command Window		X 5
C:\MATLAB6p5\w	ork 💌 1	l 🖄 👫	Using Toolbox Path	Cache. Type "help toolbo	x_path_cache
All Files		File Typ	To get started, sel	ect "MATLAB Help" from th	ne Help menu.
2188E_src		Folder 📥		1	•
🛅 beep		Folder	gui8000	,	
🛅 beepdll	🜗 18000 Series User Interfa	ce			
🛅 buttons	RS232 TCP/IP				
001 💼	Serial Port			Connect	
	COM1 -	Paudrata	Stop		
Worksp		115200		Stop	
Command History		Davita		Download	
tu=[t;u];		none		Downood.	
lrsimtfdemo -f		1		Lipiped	
load rsimtfdem		Message			
plot(rt_yout)		RS232 Mode		Evét CLII	
% 2/09/04 10				Exit GOI	_
gui8000					<u>}</u>
Start Busy_	STATUS		Not Connected		

Step 2: On the TCP/IP page, enter **192.168.0.15** in the field 'IP' and **10000** in the field 'Port' respectively. Then click **Connect** to establish a connection with I-8438/8838.

8438/8838 User Manual

MATLAB	Wab Window Halp		
D 👼 X	ि 🔁 म्यातर्वज्ञ निर्देष 🥇 🚺 🕻 Current Dir	ectory: C:WATLAB6p5\work	.
Current Directory	X 5	Command Window	X 5
C:\MATLAB6p5\v	work 💌 🛄 🖻 💣 🚧	Using Toolbox Path Cache.	Type "help toolbox_path_cache
All Files	File Typ	To get started, select "MAT	LAB Help" from the Help menu.
🧰 7188E_src	Folder 📥		
🛅 beep	Folder	>> gui8000	
🛅 beepdll	🜖 I8000 Series User Interface		
buttons	RS232 TCP/IP		
i 005 📄			Connect
•	Connect to :		
Worksp			Stop
Command History	IP 192 168		
tu=[t;u];	D 1 10000	Set NET	Download
save newfrom.m	Port 10000	JOINET	
!rsimtfdemo -f			Upload
nlot(rt yout)	TCD/ID Made		
% 2/09/04 10	I LEVIE Mode		Exit GUI
gui8000			
Start Busy	STATUS	Not Connected	

Step 3: When the connection was established successfully, the grayed button **SetNET** is enabled.

MATLAB	Web Window Help			<u>-0×</u>
	🛅 🛍 🗠 🖓 🎁 🥐 Current Dir	rectory: C:WATLAB6p5\wo	ork	.
Current Directory	X 5	Command Window		X 5
C:\MATLAB6p5\w	ork 🔽 🛄 🗈 💣 🚧	Using Toolbox Path	Cache. Type "help toolbox	_path_cache
All Files	File Typ	To get started, sel	ect "MATLAB Help" from the	Help menu.
2188E_src	Folder 📥			
🚞 beep	Folder	>> gui8000		
🛅 beepdll	🚚 I8000 Series User Interface			
🛅 buttons	RS232 TCP/IP			
🚞 d001			Disconnect	
•	Connect to :			
Worksp			Start	
Command History	IP 192 168	0 15		
tu=[t;u];		Sot NET	Download	
save newfrom.m	Port 10000	JECINET		
!rsimtfdemo -f			Upload	
load rsimtfdem	Message			
% 2/09/04 10	Connection is establis	hed	Exit GUI	
gui8000				*
<u> </u>	STATUS	onnection is established	<u> </u>	
Start Busy_				

Step 4: Click SetNET to open the setting window as shown in the figure below. Enter intended ip, mask, gateway in the field 'IP', 'MASK', and 'GATEWAY' respectively. Then press **SET** to change the setting.

8438/8838 User Manual

MATLAB	
C IP 192 168 0 15 ectory: C:WATLAB6p5Woo	ork 💌
Cur MASK 255 255 0 0 Command Window	X 5
GATEWAY 192 168 0 1	Cache. Type "help toolbox_path_cache
Al To get started, sel	ect "MATLAB Help" from the Help menu.
SET Cancel >> gui8000	
beepd11 18000 Series User Interface	
buttons RS232 TCP/IP	Discourset
Connect to :	
Worksp	Start
Command History	Download
tu=[t;u]; save newfrom.m Port 10000 Set NET	
Irsintfdemo -f	Upload
plot(rt_yout) Connection is established	T-A-OLU
% 2/09/04 10 mui8000	
Connection is established	

Step 5: If the process was completed successfully, the connection will be disconnected. And you will need to connect again.

AMATLAB		×
<u>File Edit View Web</u>	<u>W</u> indow <u>H</u> elp	
🗅 🚅 🕺 🖻 🛍	🖺 හ ශ 🛛 🎁 📔 🥐 Current Di	irectory: C:MATLAB6p5/work
Current Directory	× s	Command Window
C:\MATLAB6p5\work	💌 🖻 🖄 👫	Using Toolbox Path Cache. Type "help toolbox_path_cache
All Files	File Typ	To get started, select "MATLAB Help" from the Help menu.
2188E_src	Folder 📥	
🛅 beep	Folder	>> gui8000
🚞 beepd11	I8000 Series User Interface	
🚞 buttons	RS232 TCP/IP	
a001 🧰		Connect
•	Connect to :	
✓ ► Workspace		Start
Command History	IP 192 168	0 15
tu=[t;u];	Post 10000	Set NET
save newfrom.mat tu	Full [10000	
!rsimtfdemo -f rsim		Upload
load rsimtfdemo	Mess	sage
plot(rt_yout)	Connection is te	erminated
% 2/09/04 10:26 A		
gui8000	1	
1 A Ctart D	STATUS	Not Connected
Start Busy		

Push Buttons on S-MMI

If you want to change ip, mask, and gateway of the I-8438/8838 via push buttons on S-MMI, you can follow the procedures shown in the figure below. We provide three parameters for users to set. They are PA_00, PA_01, and PA_02, which correspond with ip, mask, and gateway respectively. In the following figure, the alteration of ip is demonstrated. You can change the mask and gateway in a similar manner except different parameter.

After flickering, the set value has been changed.

Appendix D. Addition Function for New Driver Version

[New Function for Matlab Driver v1.1]

There are two new buttons -- "**Auto**" and "**eAuto**" provided in the GUI screen for <u>RS-232</u> and <u>Ethernet</u> interface separately. After users complete connection and download file to the matlab controller, users can click "Auto" or "eAuto" button to execute the following continuous steps automatically :

- (1) "Run Program"
- (2) "Upload when stop time is up"
- (3) "<u>Close GUI</u>"

That will be more convenient for users to test the control algorithm during the development stage. These two Auto button are showed as the following figure.

🔧 I8000 Series User Interface				
RS232	TCP/IP			
Seri	al Port	*	Auto	Disconnect
Соме	•	Baudrate 115200 • 1	Stop •	Start
		Parity	Data •	Download
				Upload
		Message		
	Conn	ection is established		Exit GUI
STATUS		Connecti	on is established	

RS-232 Interface

	8438/8838 User Ma	
J 18000 Series User Interface		
RS232 TCP/IP		
eAuto	Disconnect	
Connect to :		
	Start	
IP 192 168 0 15		
Port 10000 Set NET	Download	
	Upload	
Message		
Connection is established	Exit GUI	
I STATUS Connection is established		
STATUS Connection is established		

Ethernet Interface

The whole process for **Auto** button function is described as following (Ethernet Interface Example) :

After users complete the connection and download file to the matlab controller, users can click Auto button in the GUI screen to execute the following steps :

	(1)	" <mark>Run</mark>	Program"	:
--	-----	--------------------	----------	---

🛃 18000 Series User Interface		
RS232 TCP/IP		
eAuto	Disconnect	
Connect to :	Stop	
IP 192 168 0 15		
Port 10000 Set NET	Download	
	Upload	
Message		
Program is running Exit GUI		
STATUS Connection is established		

(2) "<u>Upload when stop time is up</u>" :

🜗 18000 Series User Interface	
RS232 TCP/IP eAuto Connect to :	Disconnect Stop
IP 192 168 0 15 Port 10000 Set NET	Download Upload
Message 2. TimeUp	Exit GUI
STATUS Connection is established	

J I8000 Series User Interface	
RS232 TCP/IP	
eAuto	Disconnect
Connect to :	Stop
Port 10000 Set NET	Download
Message	Upload
3. Data is uploading	Exit GUI
Uplo	ad 78%

(3) "<u>Close GUI</u>" :

🛃 18000 Series User Interface		
RS232 TCP/IP		
eAuto	Disconnect	
Connect to :		
	Start	
IP 192 168 0 15		
	Download	
Port 10000 Set NET		
	Upload	
Message		
4. GUI Will Close	Exit GUI	
STATUS Connection is established		

Appendix E. History of Versions

Version	Ву	Date	Description of changes
1.0.0	Edward	15-June-04	1. First driver version
			1. Add "Auto" function for RS-232 / Ethernet
1.1.0 Edwa	Edward	10 101/06	 RS-232 / Ethernet connection will be ok no matter what controller mode is.
	Euwaru	10-July-06	3. Add RS-232 connection number to "COM 8"
			 Modify slow speed download file via Ethernet problem